Schulinterner Lehrplan NW

Matrix für die Planung kompetenzorientierten Unterrichts

Unterrichtsvorhaben	Inhaltsfeld	Schwerpunkte
Jahrg. 10 - ca h Energiequellen und Umweltschutz	Elektrische Energieversorgung (10)	 Elektromagnetismus und Induktion Elektromotor und Generator Kraftwerke und Nachhaltigkeit

Basiskonzepte

Basiskonzept Struktur und Materie	Basiskonzept Energie
	Elektrische Energie, Energiewandler, elektrische Leistung, Energietransport
Basiskonzept Wechselwirkung	Basiskonzept System
Magnetfelder von Leitern und Spulen, elektromagnetische Kraft- wirkungen, Induktion	Elektromotor, Generator, Transformator, Versorgungsnetze, Nachhaltigkeit, Klimawandel

Konkretisierte Kompetenzerwartungen

Beispiele für nicht erneuerbare und regenerative Energiequellen beschreiben und die wesentlichen Unterschiede erläutern. (UF2, UF3) den Aufbau und die Funktion von Elektromotor, Generator und Transformator beschreiben und mit Hilfe der magneti Erkenntnisgewinnung die in elektrischen Stromkreisen umgesetzte Energie und Leistung bestimmen. (E8) bei elektrischen Versuchsaufbauten Fehlerquellen systematisch eingrenzen und finden. (E3, E5) Energiebedarf und Leistung von elektrischen Haushaltsge-

 schen Wirkung des elektrischen Stromes bzw. der elektromagnetischen Induktion erklären. (UF1) (E-Kurs: magnetische Felder stromdurchflossener Leiter und Spulen im Feldlinienmodell darstellen und mit Hilfe der "Drei-Finger-Regel" die Richtung der Lorentzkraft auf stromdurchflossene Leiter im Magnetfeld bestimmen). (UF3, E8)) die Umwandlung der Energieformen von einem Kraftwerk bis zu den Haushalten unter Berücksichtigung der Energieentwertung beschreiben. (UF1) (E-Kurs: Gemeinsamkeiten und Unterschiede elektrischer, magnetischer und Gravitationsfelder beschreiben. (UF4, UF3)) 	räten ermitteln und ihre Energiekosten berechnen. (E8, UF4)
 Kommunikation aus verschiedenen Quellen Informationen zur effektiven Übertragung und Bereitstellung von Energie zusammenfassend darstellen. (K5) Daten zur individuellen Nutzung der Energie von Elektrogeräten (Stromrechnungen, Produktinformationen, Angaben zur Energieeffizienz) auswerten. (K2, K6) in einem Projekt, etwa zu Fragestellungen der lokalen Energieversorgung, einen Teilbereich in eigener Verantwortung bearbeiten und Ergebnisse der Teilbereiche zusammenführen. (K9) 	Vor- und Nachteile nicht erneuerbarer und regenerativer Energiequellen an je einem Beispiel im Hinblick auf eine physikalisch-technische, wirtschaftliche, und ökologische Nutzung auch mit Bezug zum Klimawandel begründet gegeneinander abwägen und bewerten. (B1, B3)

Vorhabenbezogene Konkretisierung des Unterrichts (Absprachen zu Inhalten und Vorschläge zum Unterricht, Schülerbuch Cornelsen: Natur und Technik Physik, Bd. 2/3)

Inhalte	Unterricht
Wiederholung: Grundbegriffe und Grundgrößen der E-Lehre.	AB mit wiederholenden Fragen zu den genannten Inhalten.
Stromkreis, Reihen- und Parallelschaltung, I, U, R, Ladungen,	

Modell von fließendem Strom.	
Wiederholung: Magnetismus und Feldbegriff, Feldlinienmodell, Vergleich der Felder E, B und Gravitation.	Einführende Versuche zum Magnetismus.
Vom stromdurchflossenen Leiter zum Elektromagneten	Lehrerversuch: Oersted-Versuch (S. 248/9)
	Darstellung Feldlinienbild eines stromdurchflossenen Leiters, Linke-Faust-Regel (S. 248/9)
	Aufwicklung des Leiters -> Spule
	Vergleich Permanentmagnet und Elektromagnet (möglich SV
	mit Untersuchung der Abhängigkeit des Elektromagneten von I,
	Eisenkern, Windungszahl); DVD Physik 2 - richtig gut erklärt:
	Elektrik 2, Interaktive Experimente, GIDA
Von der Leiterschaukel zum Elektromotor	Leiterschaukel (Lorentzkraft, Linke-Hand-Regel/UVW-Regel
Umwandlung von elektrischer Energie in Bewegungsenergie	(Ursache-Vermittlung-Wirkung)), LEIFI.
	Aufwicklung der Leiterschaukel zur Spule.
	Möglich: Versuche zum Elektromotor (LV) und auch als Bausatz
	(SV).
Induktion	Einstieg: Spulen und Magnete
Umwandlung von Bewegungsenergie in elektrische Energie	Benutzung von Elektromotoren als Generatoren
	Untersuchung: Wovon hängt die Größe der Induktionsspannung
	ab? (LV, SV)
Transformator	Versuche am Transformator (LV, SV)
Physikalische Arbeit (W) und Leistung (P)	Energiewandler im Haushalt
	Berechnung von Energiekosten (S. 270ff), Stromrechnung
Vom Kraftwerk zu Haushalt und Industrie	Energieumwandlungsketten
	Möglichkeit: Stromnetz
	Vor- und Nachteile unterschiedlicher Energieformen

Voraussetzungen/Bezüge zu vergangenem und folgendem Unterricht

- Jg 8: Inhaltsfeld 7, Stromkreise
- Jg 6: Inhaltsfeld NW Magnetismus

Materialien/Medien

- Geräte für Schülerexperimente und Lehrerversuche
- Filme zu Kraftwerken und Elektromotoren
- Internetzugang
- DVD Physik 2 richtig gut erklärt: Elektrik 2
- Interaktive Experimente, GIDA

Lernprodukte/ Leistungsüberprüfung / Gewichtung

- Physikmappe
- Versuchsprotokoll
- Schriftliche Überprüfung

Absprachen zur Inneren Differenzierung und Individualisierung

- Zusatzangebote bei Schülerexperimenten
- Unterschiedliche Schwierigkeitsgrade bei den Übungsaufgaben
- Schüler als Experten/ Helfer

Vernetzungen zu anderen Fächern

- Technik: Funktionsweise vom Elektromotoren
- GL: Energiepolitik, Einfluss des Menschen auf die Umwelt
- Mathematik: Tarifberechnung und Vergleich
- Berufsorientierung: Berufsfeld Elektrik, Mechatroniker

Sprachförderung / Fachbegriffe

- Abgrenzung der fachsprachlichen Begriffe vom umgangssprachlichen Gebrauch
- Präziser Gebrauch der Fachsprache
- Zentrale Begriffe erläutern, formal beschreiben und voneinander abgrenzen
- Sprachsensibler Fachunterricht: Förderung Go-In-SuS Einbeziehung von grundlegenden physikalischen Fachbegriffen

Schulinterner Lehrplan NW

Matrix für die Planung kompetenzorientierten Unterrichts

Unterrichtsvorhaben	Inhaltsfeld	Schwerpunkte
Kernkraftwerke und Entsorgung Jahrg. 10 - ca h		Atomkerne und RadioaktivitätIonisierende StrahlungKernspaltung

Basiskonzepte

Basiskonzept Struktur und Materie	Basiskonzept Energie
Atome und Atomkerne, Ionen, Isotope, radioaktiver Zerfall	Kernenergie, Energie ionisierender Strahlung
Basiskonzept Wechselwirkung	Basiskonzept System
α -, β -, γ -Strahlung, Röntgenstrahlung, Wirkungen ionisierender Strahlen, Strahlenschutz	Halbwertzeiten, Kernspaltung und Kettenreaktion, natürliche Radioaktivität

Konkretisierte Kompetenzerwartungen

Umgang mit Fachwissen	Erkenntnisgewinnung	
 Eigenschaften, Wirkungen und Nachweismöglichkeiten verschiedener radioaktiver Strahlung und von Röntgenstrahlung beschreiben. (UF1) die Wechselwirkung ionisierender Strahlung mit Materie erläutern und damit mögliche medizinische und technische 	 den Aufbau von Atomen und Atomkernen, die Bildung von Isotopen sowie Kernspaltung und Kernfusion mit einem angemessenen Atommodell beschreiben. (E7, UF1) physikalische, technische und gesellschaftliche Probleme der Nutzung der Kernenergie differenziert darstellen. (E1, K7) 	

 Anwendungen, sowie Gefährdungen und Schutzmaßnahmen erklären. (UF1, UF2, E1) Kernspaltung und kontrollierte Kettenreaktion in einem Kernreaktor (EKurs: auch unter energetischen Gesichtspunkten) erläutern. (UF1) 	 Zerfallskurven und Halbwertszeiten zur Vorhersage von Zerfallsprozessen nutzen. (E8) (E-Kurs: am Beispiel des Zerfallsgesetzes den Charakter und die Entstehung physikalischer Gesetze erläutern. (E9))
 aus Darstellungen zur Energieversorgung Anteile der Energiearten am Energiemix bestimmen und visualisieren (E-Kurs: auch extrapolieren bezüglich künftiger Entwicklungen). (K4, K2). Informationen und Positionen zur Nutzung der Kernenergie und anderer Energiearten differenziert und sachlich darstellen sowie hinsichtlich ihrer Intentionen überprüfen und bewerten. (K5, K8) (E-Kurs: vorgegebene schematische Darstellungen von Zerfallsreihen interpretieren. (K2)) 	 Nutzen und Risiken radioaktiver Strahlung und Röntgenstrahlung auf der Grundlage physikalischer und biologischer Fakten begründet abwägen. (B1) (E-Kurs: Gefährdungen durch Radioaktivität anhand von Messdaten (in Bq, Gy, Sv) grob abschätzen und beurteilen. (B2, B3) eine eigene Position zur Nutzung der Kernenergie einnehmen, dabei Kriterien angeben und ihre Position durch geeignete Argumente stützen. (B2) (E-Kurs: Die Entdeckung der Radioaktivität und der Kernspaltung als Ursache für Veränderungen in Physik, Technik und Gesellschaft darstellen und beurteilen. (B3))

Vorhabenbezogene Konkretisierung des Unterrichts

(Absprachen zu Inhalten und Vorschläge zum Unterricht, Schülerbuch Cornelsen: Natur und Technik Physik, Bd. 3)

Inhalte	Unterricht
Nutzen und Risiken der Kernenergie, Strahlungsarten, Wirkungen ionisierender Strahlung, Strahlungsschäden, Strahlenschutz	Film zur Reaktorkatastrophe in Tschernobyl, Fukushima, Buch (S.378, S. 400ff)
Atommodell, Aufbau des Atomkerns, Rutherfordversuch, Eigenschaften der verschiedenen Strahlungsarten, natürlicher radioaktiver Zerfall, Kernspaltung, Halbwertszeit	Experimente, Arbeitsblätter und Buch (S.374, 383ff.)
Nachweisgeräte für ionisierende Strahlung	Lehrerexperimente mit Nachweisgeräten (Geigerzähler) und

	schwach radioaktiven Stoffen, Nullrate	
Persönliche Strahlenbelastung, physikalischen Messgrößen	Arbeitsblätter, Buch (S.376f.)	
Kernkraftwerke, Endlagerung als gesellschaftliches und techni- Reaktortypen, Kernspaltung, Kettenreaktion, HWZ (Bie		
sches Problem	schaumversuch), Castor, Film Endlagerung, Buch (S. 398	

Voraussetzungen/Bezüge zu vergangenem und folgendem Unterricht	Materialien/Medien	Lernprodukte/ Leistungsüberprüfung / Gewichtung
Jg. 8: Stromkreise: Einfache Atommodelle, Atomhülle, Elektronen und Protonen	 Geräte für Lehrerexperimente Filme Simulationen (Java Applets) DVD Physik 2 - richtig gut erklärt: Radioaktivität GIDA, Total phänomenal 	 Physikmappe Versuchsprotokoll Schriftliche Überprüfung

Absprachen zur Inneren Differenzierung und Individualisierung

- Unterschiedliche Schwierigkeitsgrade bei den Übungsaufgaben
- Evtl. Referate
- Diskussionen

Vernetzungen zu anderen Fächern

• Chemie: Atommodelle

• Technik: Aufbau von Kraftwerken, Energiemix, Energiewende

• **GL**: Energiewende

Sprachförderung / Fachbegriffe

- Abgrenzung der fachsprachlichen Begriffe vom umgangssprachlichen Gebrauch,
- Präziser Gebrauch der Fachsprache
- Zentrale Begriffe der Kernphysik erläutern, formal beschreiben und voneinander abgrenzen
- Sprachsensibler Fachunterricht: Förderung Go-In-SuS Einbeziehung von grundlegenden physikalischen Fachbegriffen